
The design of a Disk Resource Manager

Arie Shoshani, Alex Sim

A Disk Resource Manager (DRM) is a component that controls the use of a shared disk
cache in a data grid. As a shared disk, it can be used by multiple users and therefore the
DRM has to have some policy that determines how much of the disk cache can be used
by a given user, how long to keep a file in disk once it was cached, and which files to
remove when space is needed.

There are several issues that have to be dealt with when designing the DRM
functionality. These include getting a file into the disk from another source, storing a file
by a client, how to enforce time outs, queuing requests by the DRM, registration of files
in the replica catalog, space reservations, status of a file transfer request, and collecting
and providing statistics on the cache availability and usage. We describe each below.

1. Getting a file into the disk from another source
At the most basic level, a DRM must be able to support a request for getting a file from
another disk into the disk cache. This is the case that a file is known to the client because
it is registered with the replica catalog. A request to DRM to get this file requires that the
DRM makes space for the file in the disk cache, usually by removing other unused files,
requesting that the file at the source DRM be pinned (if such a capability exists), initiate a
file transfer from the source to its disk, monitoring the progress of the transfer, and
notifying the caller when the file has been fully transferred. After a file has been
transferred, the DRM may register the file with the file catalog, so that other client can
use it. Similarly, before a shared file is removed by DRM (to make space for new files)
the DRM should remove the replica entry from the file catalog. Whether DRMs should
update the replica catalog on a file basis or a less frequent rate is a policy determined by
the data grid administrator. A requested file may be found in cache because another user
has previously requested it. In this case, it is wise to share the file. We will discuss later
the method for sharing files while maintaining security.

2. Pinning a file
Assuming that a DRM can hold files temporarily, it is necessary to ask it to pin a file
before a file transfer from it is initiated. This is part of facilitating file sharing between
clients. Of course, one can skip this step, but then we take a chance that the file may be
removed in mid transfer, or may not be there when the transfer is initiated. This is true,
even if the source is well behaved in that it removes its entry from the replica catalog,
because of an obvious race condition: the client may have gotten the replica reference and
did not start the transfer by the time it is removed. If a source system has no DRM, one
can assume that the file will be there for a long time and it is safe to perform a file
transfer without pinning. A file being pinned is expected to normally be found in the
cache.

3. Storing a file by a client

Another function by a DRM is to store files that clients generate. Typically, such files
are stored temporarily and then transferred to other sites, perhaps a tape system. Thus,
there is no need to register such files in the replica catalog. This function is similar to
getting a file as far as making space for the file, but the DRM does not have to pin a file a
the source. The client, who is obviously the owner of the file, is responsible to register it
with the file catalog, if he/she chooses to do that.

4. Time outs
A well behaved client is expected to release a file after it is done using it. However, a
DRM cannot rely on that, and must have a policy for removing files. It is up to the local
administrator of each DRM to determine the policy for a time out of a file. There may be
a different time out for files transferred into the DRM from file pinned by the DRM. A
time out policy only guarantees that a file will be in cache for the time out period.
Beyond that, the file may or may not be found in cache, depending on its sharing by other
clients, and the need to release space. The time out enforcement is therefore
per_file_per_user.

4. Queuing requests
In a busy system, it is possible that a file transfer request cannot be accomplished at the
time it is requested. In this case, an error “system busy” will be returned to the client.
The client will then try repeatedly until the request is accepted or it may give up. To
avoid this situation, a DRM can help by queuing requests. Rather than return a “system
busy” response, it can queue the request, and return a status with the estimated time. The
client can then accept the estimated time or abort the request. This feature is not essential
for a DRM, but having it can cut down on repeated requests and can be used to enforce
policy and fairness of service of clients’ requests.

5. Registration of files in the replica catalog
If the DRM is managing a shared disk cache, then any file stored in that system can
potentially be needed by other clients. Thus, after a file is transfer to the DRM’s disk, it
should be registered in the Replica Catalog, so that other clients know about its existence.
The choice to register a file is part of the DRM’s policy. Also, the frequency of
registration is a local policy. The frequency of registration can be either immediate after
a file was transferred, or one can have a policy to update the replica catalog periodically.
Similar to registering the addition of a replica, it is necessary to update the replica catalog
when a file is removed. In this case, it is wise to remove the replica entry before the file
is physically removed, but as mentioned in point 2 above this does not guarantee that the
file will not be requested after is removed.

6. Space reservations
Space reservations can be a problematic function to provide. On the one hand, it makes
sense for clients to make plan to use a certain amount of space at a certain time for a
certain duration. On the other hand, such reservations can be very wasteful of space,
since a DRM must keep the space unused to guarantee a reservation. It seems that for
reservations to be effective, some king of a cost must be charged to the clients, so they
have an incentive to act responsibly. A responsible behavior means that the clients use

the space assigned, and release it as soon as they do not need the space. Another aspect
of space assignment is how to advertise or describe the available space, since it is a
function of time. This information is needed for request planning. At a minimum every
DRM should be able to respond to a request for space reservation for a certain time and
duration either positively or suggest the earliest time that such a reservation can be made.

7. Status of a file transfer request
After a request for file caching is made, the DRM should be capable of providing the
status of the request. This includes information on whether the request is still queued,
whether the transfer is in progress, and how much of the file was transferred so far. In
case that the request is still queued, a time estimate should be provided as to when the
request will be executed.

8. Providing statistics on the cache availability and usage
This functionality is necessary in order for clients of the DRM to plan how to use the
DRM. This includes statistics on past usage of the cache and the size of its request queue
over time. Such statistics could be used to determine if the cache is overused and causes
a bottleneck in the data grid.

